CS 70 Discrete Mathematics and Probability Theory Fall 2022 Satish Rao and Babak Ayazifar DIS 11A

1 Covariance

(a) We have a bag of 5 red and 5 blue balls. We take two balls uniformly at random from the bag without replacement. Let X_1 and X_2 be indicator random variables for the events of the first and second ball being red, respectively. What is $cov(X_1, X_2)$? Recall that $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

(b) Now, we have two bags A and B, with 5 red and 5 blue balls each. Draw a ball uniformly at random from A, record its color, and then place it in B. Then draw a ball uniformly at random from B and record its color. Let X_1 and X_2 be indicator random variables for the events of the first and second draws being red, respectively. What is $cov(X_1, X_2)$?

2 Shuttles and Taxis at Airport

In front of terminal 3 at San Francisco Airport is a pickup area where shuttles and taxis arrive according to a Poisson process. The shuttles arrive at a rate $\lambda_1 = 1/20$ (i.e. 1 shuttle per 20 minutes) and the taxis arrive at a rate $\lambda_2 = 1/10$ (i.e. 1 taxi per 10 minutes) starting at 00:00. The shuttles and the taxis arrive independently.

- (a) What is the distribution of the following:
 - (i) The number of taxis that arrive between times 00:00 and 00:20?
 - (ii) The number of shuttles that arrive between times 00:00 and 00:20?
 - (iii) The total number of pickup vehicles that arrive between times 00:00 and 00:20?
- (b) What is the probability that exactly 1 shuttle and 3 taxis arrive between times 00:00 and 00:20?

(c) Given that exactly 1 pickup vehicle arrived between times 00:00 and 00:20, what is the conditional probability that this vehicle was a taxi?

(d) Suppose you reach the pickup area at 00:20. You learn that you missed 3 taxis and 1 shuttle in those 20 minutes. What is the probability that you need to wait for more than 10 mins until either a shuttle or a taxi arrives?

3 Sum of Poisson Variables

Assume that you were given two independent Poisson random variables X_1, X_2 . Assume that the first has mean λ_1 and the second has mean λ_2 . Prove that $X_1 + X_2$ is a Poisson random variable with mean $\lambda_1 + \lambda_2$. *Hint*: Recall the binomial theorem.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

4 Various Variance Problems

(a) Suppose that *X* and *Y* are both binomial random variables with parameters *n* and *p* and Var(X - Y) = 2. Find cov(X, Y) in terms of *n* and *p*. (b) Prove that if X and Y are independent random variables, then

$$\operatorname{Var}(XY) = \operatorname{Var}(X)\operatorname{Var}(Y) + \mathbb{E}[X]^2\operatorname{Var}(Y) + \mathbb{E}[Y]^2\operatorname{Var}(X).$$